Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Food Chem ; 449: 138970, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38653141

RESUMO

Self-fermented oyster homogenates were prepared to investigate core microbes and their correlations with flavor formation mechanisms. Five bacterial and four fungal genera were identified. Correlation analysis showed that Saccharomyces cerevisiae, Kazachstania, and L. pentosus were core species for the flavor of fermented products. Four core microbes were selected for inoculation into homogenates. Twelve key aroma compounds with odor activity values >1 were identified by gas chromatography-mass spectrometry. L. plantarum and S. cerevisiae were beneficial for producing key aroma compounds such as 1-octen-3-ol, (E,Z)-2,6-nonadienal, and heptanal. Fermentation with four microbes resulted in significant increases in contents of Asp, Glu, Lys, inosine monophosphate, and guanosine monophosphate, which provided freshness and sweetness. Fermentation with four microbes resulted in high digestibility, antioxidant abilities, and zinc contents. This study has elucidated the mechanism of flavor formation by microbial action and provides a reference for targeted flavor control in fermented oyster products.

2.
Food Chem X ; 21: 101236, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38406763

RESUMO

Despite the favorable biocompatibility of natural antimicrobial peptides (AMPs), their scarcity limits their practical application. Through rational design, the activity of AMPs can be enhanced to expand their application. In this study, we selected a natural sturgeon epidermal mucus peptide, AP-16 (APATPAAPALLPLWLL), as the model molecule and studied its conformational regulation and antimicrobial activity through amino acid substitutions and N-terminal lipidation. The structural and morphological transitions of the peptide self-assemblies were investigated using circular dichroism and transmission electron microscopy. Following amino acid substitution, the conformation of AL-16 (AKATKAAKALLKLWLL) did not change. Following N-terminal alkylation, the C8-AL-16 and C12-AL-16 conformations changed from random coil to ß-sheet or α-helix, and the self-assembly changed from nanofibers to nanospheres. AL-16, C8-AL-16, and C8-AL-16 presented significant antimicrobial activity against Pseudomonas and Shewanella at low concentrations. N-terminal alkylation effectively extended the shelf life of Litopenaeus vannamei. These results support the application of natural AMPs.

3.
Food Res Int ; 178: 113914, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309863

RESUMO

Fishy odor in aquatic products has a significant impact on the purchasing decisions of consumers. The production of aquatic products is a complex process involving culture, processing, transportation, and storage, which contribute to decreases in flavor and quality. This review systematically summarizes the fishy odor composition, identification methods, generation mechanism, and elimination methods of fishy odor compounds from their origin and formation to their elimination. Fishy odor compounds include aldehydes (hexanal, heptanal, and nonanal), alcohols (1-octen-3-ol), sulfur-containing compounds (dimethyl sulfide), and amines (trimethylamine). The mechanism of action of various factors affecting fishy odor is revealed, including environmental factors, enzymatic reactions, lipid oxidation, protein degradation, and microbial metabolism. Furthermore, the control and removal of fishy odor are briefly summarized and discussed, including masking, elimination, and conversion. This study provides a theoretical basis from source to elimination for achieving targeted regulation of the flavor of aquatic products, promoting industrial innovation and upgrading.


Assuntos
Aldeídos , Odorantes
4.
Food Res Int ; 178: 113903, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309899

RESUMO

The volatile and non-volatile compounds were monitored to investigate the microbial evolution associated with the characteristic flavors for sturgeon caviar during refrigeration. The results revealed that the composition of volatile compounds changed significantly with prolonged refrigeration time, especially hexanal, nonanal, phenylacetaldehyde, 3-methyl butyraldehyde, and 1-octen-3-ol. The nonvolatile metabolites were mainly represented by the increase of bitter amino acids (Thr. Ser, Gly, Ala, and Pro) and a decrease in polyunsaturated fatty acids, especially an 18.63 % decrease in 5 months of storage. A total of 332 differential metabolites were mainly involved in the biosynthetic metabolic pathways of α-linolenic acid, linoleic acid, and arachidonic acid. The precursors associated with flavor evolution were mainly phospholipids, including oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The most abundant at the genus level was Serratia, followed by Arsenophnus, Rhodococcus, and Pseudomonas, as obtained by high-throughput sequencing. Furthermore, seven core microorganisms were isolated and characterized from refrigerated caviar. Among them, inoculation with Mammalian coccus and Bacillus chrysosporium restored the flavor profile of caviar and enhanced the content of nonvolatile precursors, contributing to the characteristic aroma attributes of sturgeon caviar. The study presents a theoretical basis for the exploitation of technologies for quality stabilization and control of sturgeon caviar during storage.


Assuntos
Ácidos Graxos Insaturados , Peixes , Animais , Fosfolipídeos , Produtos Pesqueiros , Ácido Linoleico , Mamíferos
5.
IEEE Trans Med Imaging ; PP2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206778

RESUMO

Color fundus photography (CFP) and Optical coherence tomography (OCT) images are two of the most widely used modalities in the clinical diagnosis and management of retinal diseases. Despite the widespread use of multimodal imaging in clinical practice, few methods for automated diagnosis of eye diseases utilize correlated and complementary information from multiple modalities effectively. This paper explores how to leverage the information from CFP and OCT images to improve the automated diagnosis of retinal diseases. We propose a novel multimodal learning method, named geometric correspondence-based multimodal learning network (GeCoM-Net), to achieve the fusion of CFP and OCT images. Specifically, inspired by clinical observations, we consider the geometric correspondence between the OCT slice and the CFP region to learn the correlated features of the two modalities for robust fusion. Furthermore, we design a new feature selection strategy to extract discriminative OCT representations by automatically selecting the important feature maps from OCT slices. Unlike the existing multimodal learning methods, GeCoM-Net is the first method that formulates the geometric relationships between the OCT slice and the corresponding region of the CFP image explicitly for CFP and OCT fusion. Experiments have been conducted on a large-scale private dataset and a publicly available dataset to evaluate the effectiveness of GeCoM-Net for diagnosing diabetic macular edema (DME), impaired visual acuity (VA) and glaucoma. The empirical results show that our method outperforms the current state-of-the-art multimodal learning methods by improving the AUROC score 0.4%, 1.9% and 2.9% for DME, VA and glaucoma detection, respectively.

6.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138565

RESUMO

To investigate the effects of traditional high-temperature cooking and sous-vide cooking on the quality of tilapia fillets, muscle microstructure, texture, lipid oxidation, protein structure, and volatile compounds were analyzed. In comparison with samples subjected to traditional high-temperature cooking, sous-vide-treated samples exhibited less protein denaturation, a secondary structure dominated by α-helices, a stable and compact structure, a significantly higher moisture content, and fewer gaps in muscle fibers. The hardness of the sous-vide-treated samples was higher than that of control samples, and the extent of lipid oxidation was significantly reduced. The sous-vide cooking technique resulted in notable changes in the composition and relative content of volatile compounds, notably leading to an increase in the presence of 1-octen-3-ol, α-pinene, and dimethyl sulfide, and a decrease in the levels of hexanal, D-limonene, and methanethiol. Sous-vide treatment significantly enhanced the structural stability, hardness, and springiness of muscle fibers in tilapia fillets and reduced nutrient loss, enriched flavor, and mitigated effects on taste and fishy odor.


Assuntos
Tilápia , Animais , Culinária/métodos , Lipídeos
7.
J Agric Food Chem ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916660

RESUMO

To explore the umami mechanism in sturgeon meat, five peptides (ERRY, VRGPR, LKYPLE, VKKVFK, and YVVFKD) were isolated and identified by ultrafiltration, gel filtration chromatography, and UPLC-QTOF-MS/MS. The omission test confirmed that the five umami peptides contributed to the umami taste of sturgeon meat. Also, the peptides had the double effective role of enhancing both umami and saltiness. The threshold of ERRY was only 0.031, which exceeded most umami peptides in the last 3 years. Molecular docking results showed that five peptides could easily bind to Gly167, Ser170, and Try218 residues in T1R3 through hydrogen bonds and electrostatic interactions. Furthermore, molecular dynamics simulations indicated that hydrogen bonds and hydrophobic interactions were the main intermolecular interaction forces. This study could contribute to revealing the umami taste mechanism of sturgeon meat and provide new insights for effective screening of short umami peptides.

8.
Nat Commun ; 14(1): 6757, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875484

RESUMO

Failure to recognize samples from the classes unseen during training is a major limitation of artificial intelligence in the real-world implementation for recognition and classification of retinal anomalies. We establish an uncertainty-inspired open set (UIOS) model, which is trained with fundus images of 9 retinal conditions. Besides assessing the probability of each category, UIOS also calculates an uncertainty score to express its confidence. Our UIOS model with thresholding strategy achieves an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set, external target categories (TC)-JSIEC dataset and TC-unseen testing set, respectively, compared to the F1 score of 92.20%, 80.69% and 64.74% by the standard AI model. Furthermore, UIOS correctly predicts high uncertainty scores, which would prompt the need for a manual check in the datasets of non-target categories retinal diseases, low-quality fundus images, and non-fundus images. UIOS provides a robust method for real-world screening of retinal anomalies.


Assuntos
Anormalidades do Olho , Doenças Retinianas , Humanos , Inteligência Artificial , Algoritmos , Incerteza , Retina/diagnóstico por imagem , Fundo de Olho , Doenças Retinianas/diagnóstico por imagem
9.
Med Image Anal ; 90: 102938, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806020

RESUMO

Glaucoma is a chronic neuro-degenerative condition that is one of the world's leading causes of irreversible but preventable blindness. The blindness is generally caused by the lack of timely detection and treatment. Early screening is thus essential for early treatment to preserve vision and maintain life quality. Colour fundus photography and Optical Coherence Tomography (OCT) are the two most cost-effective tools for glaucoma screening. Both imaging modalities have prominent biomarkers to indicate glaucoma suspects, such as the vertical cup-to-disc ratio (vCDR) on fundus images and retinal nerve fiber layer (RNFL) thickness on OCT volume. In clinical practice, it is often recommended to take both of the screenings for a more accurate and reliable diagnosis. However, although numerous algorithms are proposed based on fundus images or OCT volumes for the automated glaucoma detection, there are few methods that leverage both of the modalities to achieve the target. To fulfil the research gap, we set up the Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge to encourage the development of fundus & OCT-based glaucoma grading. The primary task of the challenge is to grade glaucoma from both the 2D fundus images and 3D OCT scanning volumes. As part of GAMMA, we have publicly released a glaucoma annotated dataset with both 2D fundus colour photography and 3D OCT volumes, which is the first multi-modality dataset for machine learning based glaucoma grading. In addition, an evaluation framework is also established to evaluate the performance of the submitted methods. During the challenge, 1272 results were submitted, and finally, ten best performing teams were selected for the final stage. We analyse their results and summarize their methods in the paper. Since all the teams submitted their source code in the challenge, we conducted a detailed ablation study to verify the effectiveness of the particular modules proposed. Finally, we identify the proposed techniques and strategies that could be of practical value for the clinical diagnosis of glaucoma. As the first in-depth study of fundus & OCT multi-modality glaucoma grading, we believe the GAMMA Challenge will serve as an essential guideline and benchmark for future research.


Assuntos
Glaucoma , Humanos , Glaucoma/diagnóstico por imagem , Retina , Fundo de Olho , Técnicas de Diagnóstico Oftalmológico , Cegueira , Tomografia de Coerência Óptica/métodos
11.
Front Med (Lausanne) ; 10: 1227515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37644987

RESUMO

Background: The implementation of deep learning models for medical image classification poses significant challenges, including gradual performance degradation and limited adaptability to new diseases. However, frequent retraining of models is unfeasible and raises concerns about healthcare privacy due to the retention of prior patient data. To address these issues, this study investigated privacy-preserving continual learning methods as an alternative solution. Methods: We evaluated twelve privacy-preserving non-storage continual learning algorithms based deep learning models for classifying retinal diseases from public optical coherence tomography (OCT) images, in a class-incremental learning scenario. The OCT dataset comprises 108,309 OCT images. Its classes include normal (47.21%), drusen (7.96%), choroidal neovascularization (CNV) (34.35%), and diabetic macular edema (DME) (10.48%). Each class consisted of 250 testing images. For continuous training, the first task involved CNV and normal classes, the second task focused on DME class, and the third task included drusen class. All selected algorithms were further experimented with different training sequence combinations. The final model's average class accuracy was measured. The performance of the joint model obtained through retraining and the original finetune model without continual learning algorithms were compared. Additionally, a publicly available medical dataset for colon cancer detection based on histology slides was selected as a proof of concept, while the CIFAR10 dataset was included as the continual learning benchmark. Results: Among the continual learning algorithms, Brain-inspired-replay (BIR) outperformed the others in the continual learning-based classification of retinal diseases from OCT images, achieving an accuracy of 62.00% (95% confidence interval: 59.36-64.64%), with consistent top performance observed in different training sequences. For colon cancer histology classification, Efficient Feature Transformations (EFT) attained the highest accuracy of 66.82% (95% confidence interval: 64.23-69.42%). In comparison, the joint model achieved accuracies of 90.76% and 89.28%, respectively. The finetune model demonstrated catastrophic forgetting in both datasets. Conclusion: Although the joint retraining model exhibited superior performance, continual learning holds promise in mitigating catastrophic forgetting and facilitating continual model updates while preserving privacy in healthcare deep learning models. Thus, it presents a highly promising solution for the long-term clinical deployment of such models.

12.
Diagnostics (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189498

RESUMO

Chest X-rays (CXRs) are essential in the preliminary radiographic assessment of patients affected by COVID-19. Junior residents, as the first point-of-contact in the diagnostic process, are expected to interpret these CXRs accurately. We aimed to assess the effectiveness of a deep neural network in distinguishing COVID-19 from other types of pneumonia, and to determine its potential contribution to improving the diagnostic precision of less experienced residents. A total of 5051 CXRs were utilized to develop and assess an artificial intelligence (AI) model capable of performing three-class classification, namely non-pneumonia, non-COVID-19 pneumonia, and COVID-19 pneumonia. Additionally, an external dataset comprising 500 distinct CXRs was examined by three junior residents with differing levels of training. The CXRs were evaluated both with and without AI assistance. The AI model demonstrated impressive performance, with an Area under the ROC Curve (AUC) of 0.9518 on the internal test set and 0.8594 on the external test set, which improves the AUC score of the current state-of-the-art algorithms by 1.25% and 4.26%, respectively. When assisted by the AI model, the performance of the junior residents improved in a manner that was inversely proportional to their level of training. Among the three junior residents, two showed significant improvement with the assistance of AI. This research highlights the novel development of an AI model for three-class CXR classification and its potential to augment junior residents' diagnostic accuracy, with validation on external data to demonstrate real-world applicability. In practical use, the AI model effectively supported junior residents in interpreting CXRs, boosting their confidence in diagnosis. While the AI model improved junior residents' performance, a decline in performance was observed on the external test compared to the internal test set. This suggests a domain shift between the patient dataset and the external dataset, highlighting the need for future research on test-time training domain adaptation to address this issue.

13.
Food Chem X ; 17: 100569, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845524

RESUMO

To investigate the differences of volatile and non-volatile metabolites between oyster enzymatic hydrolysates and boiling concentrates, molecular sensory analysis and untargeted metabolomics were employed. "Grassy," "fruity," "oily/fatty," "fishy," and "metallic" were identified as sensory attributes used to evaluate different processed oyster homogenates. Sixty-nine and 42 volatiles were identified by gas chromatography-ion mobility spectrometry and gas chromatography-mass spectrometry, respectively. Pentanal, 1-penten-3-ol, hexanal, (E)-2-pentenal, heptanal, (E)-2-hexenal, 4-octanone, (E)-4-heptenal, 3-octanone, octanal, nonanal, 1-octen-3-ol, benzaldehyde, (E)-2-nonenal, and (E, Z)-2,6-nonadienal were detected as the key odorants (OAV > 1) after enzymatic hydrolysis. Hexanal, (E)-4-heptenal, and (E)-2-pentenal were significantly associated with off-odor, and 177 differential metabolites were classified. Aspartate, glutamine, alanine, and arginine were the key precursors affecting the flavor profile. Linking sensory descriptors to volatile and nonvolatile components of different processed oyster homogenates will provide information for the process and quality improvement of oyster products.

14.
PLOS Digit Health ; 2(2): e0000193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36812642

RESUMO

Anterior chamber depth (ACD) is a major risk factor of angle closure disease, and has been used in angle closure screening in various populations. However, ACD is measured from ocular biometer or anterior segment optical coherence tomography (AS-OCT), which are costly and may not be readily available in primary care and community settings. Thus, this proof-of-concept study aims to predict ACD from low-cost anterior segment photographs (ASPs) using deep-learning (DL). We included 2,311 pairs of ASPs and ACD measurements for algorithm development and validation, and 380 pairs for algorithm testing. We captured ASPs with a digital camera mounted on a slit-lamp biomicroscope. Anterior chamber depth was measured with ocular biometer (IOLMaster700 or Lenstar LS9000) in data used for algorithm development and validation, and with AS-OCT (Visante) in data used for testing. The DL algorithm was modified from the ResNet-50 architecture, and assessed using mean absolute error (MAE), coefficient-of-determination (R2), Bland-Altman plot and intraclass correlation coefficients (ICC). In validation, our algorithm predicted ACD with a MAE (standard deviation) of 0.18 (0.14) mm; R2 = 0.63. The MAE of predicted ACD was 0.18 (0.14) mm in eyes with open angles and 0.19 (0.14) mm in eyes with angle closure. The ICC between actual and predicted ACD measurements was 0.81 (95% CI 0.77, 0.84). In testing, our algorithm predicted ACD with a MAE of 0.23 (0.18) mm; R2 = 0.37. Saliency maps highlighted the pupil and its margin as the main structures used in ACD prediction. This study demonstrates the possibility of predicting ACD from ASPs via DL. This algorithm mimics an ocular biometer in making its prediction, and provides a foundation to predict other quantitative measurements that are relevant to angle closure screening.

15.
Food Res Int ; 163: 112194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596132

RESUMO

Fermented peppers are usually obtained by the spontaneous fermentation of microorganisms attached to fresh peppers, and the variable microbial composition would lead to inconsistencies in flavor between batches. To demonstrate the roles of microorganisms in flavor formation, the core microbes closely associated with the key aroma compounds of fermented pepper paste were screened and validated in this study. Lactobacillus was the dominant bacterial genus in fermented pepper paste, whereas the main fungal genera were Alternaria and Kazachstania. Nine strains of the genera Lactobacillus, Weissella, Bacillus, Zygosaccharomyces, Kazachstania, Debaryomyces, and Pichia were isolated from fermented pepper paste. Eleven key aroma compounds were identified using gas chromatography combined with olfactometry and relative odor activity values. Correlation analysis showed that Zygosaccharomyces and Kazachstania were positively correlated with the majority of the key aroma compounds, whereas Lactobacillus was negatively correlated with them. Thus, Zygosaccharomyces and Kazachstania were identified as core genera associated with the key odorants. Finally, Zygosaccharomyces bisporus, Kazachstania humilis, and Lactiplantibacillus plantarum were used as starter cultures for fermented peppers, confirming that Z. bisporus and K. humilis were more beneficial for the key aroma compounds (e.g., acetate, linalool, and phenyl ethanol) rather than L. plantarum. This study contributed to understanding the flavor formation mechanism and provided references for the quality control of food fermentation.


Assuntos
Capsicum , Capsicum/química , Odorantes/análise , Fermentação , Verduras , Cromatografia Gasosa
16.
Food Chem X ; 17: 100553, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36624817

RESUMO

The effect of oral processing on flavor release and change in composition of steamed sturgeon meat was investigated. Oral processing caused changes in the concentrations of taste compounds including amino acids, 5'-nucleotides, organic acids, and Na+. Sensory omics demonstrated that the concentrations of 12 volatile compounds increased significantly (p < 0.05) during the initial stage of oral processing. There is no significant difference in microstructure, texture, and particle size of meat bolus. The top fifteen differential lipids which including eight phospholipids in all processed samples significantly (p < 0.05) correlated with the flavor release. A total of 589 differential proteins were detected in three samples with different chewing times (0, 12, and 30 s). Analysis of the correlations between odorants and 19 differential proteins was performed. Enriched pathways including fatty acid degradation, valine, leucine and isoleucine degradation, glycine, serine and threonine metabolism, and arachidonic acid metabolism were associated with flavor release during oral processing. This study aimed to investigate potential links between flavor release and biological processes during oral processing from a proteomics perspective.

17.
J Neuroophthalmol ; 43(2): 159-167, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719740

RESUMO

BACKGROUND: The examination of the optic nerve head (optic disc) is mandatory in patients with headache, hypertension, or any neurological symptoms, yet it is rarely or poorly performed in general clinics. We recently developed a brain and optic nerve study with artificial intelligence-deep learning system (BONSAI-DLS) capable of accurately detecting optic disc abnormalities including papilledema (swelling due to elevated intracranial pressure) on digital fundus photographs with a comparable classification performance to expert neuro-ophthalmologists, but its performance compared to first-line clinicians remains unknown. METHODS: In this international, cross-sectional multicenter study, the DLS, trained on 14,341 fundus photographs, was tested on a retrospectively collected convenience sample of 800 photographs (400 normal optic discs, 201 papilledema and 199 other abnormalities) from 454 patients with a robust ground truth diagnosis provided by the referring expert neuro-ophthalmologists. The areas under the receiver-operating-characteristic curves were calculated for the BONSAI-DLS. Error rates, accuracy, sensitivity, and specificity of the algorithm were compared with those of 30 clinicians with or without ophthalmic training (6 general ophthalmologists, 6 optometrists, 6 neurologists, 6 internists, 6 emergency department [ED] physicians) who graded the same testing set of images. RESULTS: With an error rate of 15.3%, the DLS outperformed all clinicians (average error rates 24.4%, 24.8%, 38.2%, 44.8%, 47.9% for general ophthalmologists, optometrists, neurologists, internists and ED physicians, respectively) in the overall classification of optic disc appearance. The DLS displayed significantly higher accuracies than 100%, 86.7% and 93.3% of clinicians (n = 30) for the classification of papilledema, normal, and other disc abnormalities, respectively. CONCLUSIONS: The performance of the BONSAI-DLS to classify optic discs on fundus photographs was superior to that of clinicians with or without ophthalmic training. A trained DLS may offer valuable diagnostic aid to clinicians from various clinical settings for the screening of optic disc abnormalities harboring potentially sight- or life-threatening neurological conditions.


Assuntos
Aprendizado Profundo , Disco Óptico , Papiledema , Humanos , Disco Óptico/diagnóstico por imagem , Inteligência Artificial , Estudos Retrospectivos , Estudos Transversais
18.
J Agric Food Chem ; 71(1): 770-779, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541899

RESUMO

Anti-proliferative peptides have recently attracted attention for their excellent bioactivity and biocompatibility. In this paper, five novel anti-proliferative peptides were identified from the hydrolysate of hybrid sturgeon spinal cord (HSSC). In addition, the structure-activity relationship of the novel anti-proliferative peptides was explored. In vitro experiments indicated that the peptide "VDSVLDVVRK" presented the highest inhibition of HeLa cell growth in all samples (IC50 = 2.5 µM). VDSVLDVVRK showed a random coil secondary structure and nanomicelles in the tumor microenvironment. Transmission electron microscopy results confirmed that nanomicelles disassemble as the concentration of VDSVLDVVRK decreases. Furthermore, VDSVLDVVRK could induce HeLa cell apoptosis by increasing the expression of Cyt-c (98.65 ± 1.85%, p < 0.01) and caspase-9 (39.85 ± 1.81%, p < 0.01). In this study, the anti-proliferative mechanism of the HSSC peptide was discussed, which provided a theoretical basis for the research and development of anti-proliferative functional food.


Assuntos
Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Apoptose , Proliferação de Células , Peixes , Células HeLa , Peptídeos/farmacologia , Microambiente Tumoral , Neoplasias do Colo do Útero/tratamento farmacológico , Medula Espinal
19.
Food Chem X ; 17: 100534, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36536613

RESUMO

New insights revealing the flavor formation of unrinsed mixed sturgeon surimi with chicken breast were evaluated. Seventy-two volatile compounds were identified by gas chromatography-ion mobility spectrometry among the 11 surimi sample groups. The addition of 40% chicken breast caused changes in the concentrations of amino acids, 5'-nucleotides, and organic acids. Sensory attributes of balsamic, waxy, green, fresh, fatty, citrus, and aldehydic were marked when corelated with 125 volatiles identified by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 357 different lipids were identified through UPLC-Q-Orbitrap. Analysis of the correlations between flavor-active compounds and 16 different lipids revealed that various pathways, including the degradation of triglycerides, the biosynthesis of phosphatidylcholine, and the biosynthesis of lysine, serine, and methionine, were associated with flavor formation. This study provides a theoretical basis for the development of sturgeon processing industry and surimi products from the perspective of lipid changes.

20.
Med Image Anal ; 83: 102664, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332357

RESUMO

Pneumonia can be difficult to diagnose since its symptoms are too variable, and the radiographic signs are often very similar to those seen in other illnesses such as a cold or influenza. Deep neural networks have shown promising performance in automated pneumonia diagnosis using chest X-ray radiography, allowing mass screening and early intervention to reduce the severe cases and death toll. However, they usually require many well-labelled chest X-ray images for training to achieve high diagnostic accuracy. To reduce the need for training data and annotation resources, we propose a novel method called Contrastive Domain Adaptation with Consistency Match (CDACM). It transfers the knowledge from different but relevant datasets to the unlabelled small-size target dataset and improves the semantic quality of the learnt representations. Specifically, we design a conditional domain adversarial network to exploit discriminative information conveyed in the predictions to mitigate the domain gap between the source and target datasets. Furthermore, due to the small scale of the target dataset, we construct a feature cloud for each target sample and leverage contrastive learning to extract more discriminative features. Lastly, we propose adaptive feature cloud expansion to push the decision boundary to a low-density area. Unlike most existing transfer learning methods that aim only to mitigate the domain gap, our method instead simultaneously considers the domain gap and the data deficiency problem of the target dataset. The conditional domain adaptation and the feature cloud generation of our method are learning jointly to extract discriminative features in an end-to-end manner. Besides, the adaptive feature cloud expansion improves the model's generalisation ability in the target domain. Extensive experiments on pneumonia and COVID-19 diagnosis tasks demonstrate that our method outperforms several state-of-the-art unsupervised domain adaptation approaches, which verifies the effectiveness of CDACM for automated pneumonia diagnosis using chest X-ray imaging.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...